Supervised Representation Learning: Transfer Learning with Deep Autoencoders
نویسندگان
چکیده
Transfer learning has attracted a lot of attention in the past decade. One crucial research issue in transfer learning is how to find a good representation for instances of different domains such that the divergence between domains can be reduced with the new representation. Recently, deep learning has been proposed to learn more robust or higherlevel features for transfer learning. However, to the best of our knowledge, most of the previous approaches neither minimize the difference between domains explicitly nor encode label information in learning the representation. In this paper, we propose a supervised representation learning method based on deep autoencoders for transfer learning. The proposed deep autoencoder consists of two encoding layers: an embedding layer and a label encoding layer. In the embedding layer, the distance in distributions of the embedded instances between the source and target domains is minimized in terms of KL-Divergence. In the label encoding layer, label information of the source domain is encoded using a softmax regression model. Extensive experiments conducted on three real-world image datasets demonstrate the effectiveness of our proposed method compared with several state-of-theart baseline methods.
منابع مشابه
How to Train Your Deep Neural Network with Dictionary Learning
Currently there are two predominant ways to train deep neural networks. The first one uses restricted Boltzmann machine (RBM) and the second one autoencoders. RBMs are stacked in layers to form deep belief network (DBN); the final representation layer is attached to the target to complete the deep neural network. Autoencoders are nested one inside the other to form stacked autoencoders; once th...
متن کاملDeep Matching Autoencoders
Increasingly many real world tasks involve data in multiple modalities or views. This has motivated the development of many effective algorithms for learning a common latent space to relate multiple domains. However, most existing cross-view learning algorithms assume access to paired data for training. Their applicability is thus limited as the paired data assumption is often violated in pract...
متن کاملFeature Transfer Learning for Speech Emotion Recognition
Speech Emotion Recognition (SER) has achieved some substantial progress in the past few decades since the dawn of emotion and speech research. In many aspects, various research efforts have been made in an attempt to achieve human-like emotion recognition performance in real-life settings. However, with the availability of speech data obtained from different devices and varied acquisition condi...
متن کاملLearning unbiased features
A key element in transfer learning is representation learning; if representations can be developed that expose the relevant factors underlying the data, then new tasks and domains can be learned readily based on mappings of these salient factors. We propose that an important aim for these representations are to be unbiased. Different forms of representation learning can be derived from alternat...
متن کاملChurn analysis using deep convolutional neural networks and autoencoders
Customer temporal behavioral data was represented as images in order to perform churn prediction by leveraging deep learning architectures prominent in image classification. Supervised learning was performed on labeled data of over 6 million customers using deep convolutional neural networks, which achieved an AUC of 0.743 on the test dataset using no more than 12 temporal features for each cus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015